
Advanced Shell Script With Examples
Bash Scripting offers the concepts of string, array, and loops for achieving advanced
programming goals. In this article, I will explore concepts and tools of the advanced shell
script that will elevate your shell scripting skills. I will equip you with the knowledge to tackle
complex tasks.
Strings in Shell Scripting..3

Example 1: Find the Length of a String... 4
Example 2: Check if Two Strings are Equal...4
Example 3: Convert All Uppercase Letters in a String to Lowercase...................................... 4
Example 4: Remove All Whitespace from a String.. 5
Example 5: Reverse a String... 5
Example 6: Reverse a Sentence... 5
Example 7: Capitalize the First Letter of a Word... 6
Example 8: Replace a Word in a Sentence.. 6

Loops in Shell Scripting..6
Example 1: Print Numbers from 5 to 1...7
Example 2: Print Even Numbers From 1 to 10.. 7
Example 3: Print the Multiplication Table of a Number.. 8
Example 4: Calculate the Sum of Digits of a Given Number... 8
Example 5: Calculate the Factorial of a Number... 9
Example 6: Calculate the Sum of the First “n” Numbers... 9

Arrays in Shell Scripting...10
Example 1: Find the Smallest and Largest Elements in an Array..10
Example 2: Sort an Array of Integers in Ascending Order... 11
Example 3: Remove an Element from an Array...11
Example 4: Inserting an Element Into an Array... 11
Example 5: Slicing an Array Using Bash Script... 12
Example 6: Calculate the Average of an Array of Numbers.. 12
Example 7: Find the Length of an Array.. 13

Functions in Shell Scripting... 13
Example 1: Check if a String is a Palindrome..14
Example 2: Check if a Number is Prime.. 14
Example 3: Convert Fahrenheit to Celsius.. 15
Example 4: Calculate the Area of a Rectangle.. 15
Example 5: Calculate the Area of a Circle... 16

1

https://linuxsimply.com/advanced-shell-script-examples/

Example 6: Grading System.. 16
Task-Specific Bash Scripts...17

Regular Expression Based Scripts.. 17
1. Search for a Pattern inside a File...17
2. Replace a Pattern in a Fille..18

File Operations with Shell Scripts.. 18
3. Take Multiple Filenames and Prints their Contents..18
4. Copy a File to a New Location...19
5. Create a New File and Write Text Inside..20
6. Compare the Contents of Two Given Files.. 20
7. Delete a Given File If It Exists..21
8. Renames a File from Script... 21

File Permission Based Shell Scripts.. 22
9. Check the Permissions of a file..22
10. Sets the Permissions of a Directory for the Owner..22
11. Change the File Owner.. 23
12. File Permissions: Change the Overall Permissions of a File..................................... 23

Network Connection Based Shell Scripts.. 24
13. Check a Remote Host for its Availability.. 24
14. Test if a Remote Port is Open..25
15. Checking Network Connectivity... 26
16. Automating Network Configuration.. 26
17. Check if a Process is Running...27

Process Management Based Shell Scripts..28
18. Start a Process if It's Not Already Running..28
19. Stop a Process...28
20. Restart a Process.. 29
21. Monitor a Process and Restart It If Crashes..29
22. Display the Top 10 CPU-Consuming Processes..30
23. Display the Top 10 Memory-Consuming Processes.. 31
24. Kill Processes of a Specific User... 31
25. Kill All Processes That are Consuming More Than a Certain Amount of CPU..........32
26. Kill All Processes That are Consuming More Than a Certain Amount of Memory.... 32

System Information Based Shell Scripts..33
27. Check the Number of Logged-in Users..33
28. Check the Operating System Information..33
29. Check the System’s Memory Usage..34
30. Check the System’s Disk Usage..34
31. Check the System’s Network Information.. 34
32. Check the Uptime.. 35
33. Check the System Load Average.. 35

2

34. Check the System Architecture..36
35. Count the Number of Files in the System.. 36

Advanced Tasks with Shell Scripts.. 36
36. Automated Backup...36
37. Generate Alert if Disk Space Usage Goes Over a Threshold....................................37
38. Create a New User and Add to Sudo Group..37
39. Monitor Network Traffic..38
40. Monitor CPU and Memory Usage..39
41. Creating a Script and Adding It to PATH..39
42. Running a Command At Regular Intervals.. 40
43. Downloading Files from a List of URLs..41
44. Organizes Files in a Directory Based on Their File Types...42

Conclusion... 43

Strings in Shell Scripting

Similar to all the programming languages Bash also has the String data type which indicates a
set of characters. To denote inputs as String you must enclose it within the double
quotation(“”). Values passed as strings are considered as text rather than a number or
variable. Therefore, Bash provides an additional set of operators for the String data type.

The syntax for Strings in Shell Scripting is given below:

STRING_NAME="STRING_VALUE"

The String operators in Shell Scripting are as follows:

String Operators

< (Less than) == (Equal) += (Concatenation)

> (Greater than) != (Not equal)

3

Example 1: Find the Length of a String
You can simply use the ${#STRING} to find the length of a string:
Code:

#!/bin/bash

str="My name is Tom!"

len=${#str}

echo "The length of the string is: $len"

Output:

The length of the string is: 15

Example 2: Check if Two Strings are Equal
Check whether two strings are same or not using the == (Equal) operator inside if condition:
Code:

#!/bin/bash

string1="hello"

string2="world"

if ["$string1" == "$string2"]; then

echo "The strings are equal."

else

echo "The strings are not equal."

fi

Output:

The strings are not equal.

Example 3: Convert All Uppercase Letters in a String to Lowercase
Here is a bash script for converting all upper case letters in a string to lower case letters that use
the tr command with the [:upper:] and [:lower:] classes for conversion:
Code:

#!/bin/bash

read -p "Enter a string: " str

echo "Converted String:" $str | tr '[:upper:]' '[:lower:]'

Output:

Enter a string: ABCDefgh

4

converted string: abcdefgh

Example 4: Remove All Whitespace from a String
For removing white spaces from a string simply use the ${STRING// /}:
Code:

#!/bin/bash

str=" Hello from Linuxsimply ! ! "

str=${str// /}

echo "The resultant string: $str"

Output:

The resultant string: HellofromLinuxsimply!!

Example 5: Reverse a String
To reverse a string use the rev command with echo and Pipe(|):
Code:

#!/bin/bash

str="Linuxsimply"

str=$(echo "$str" | rev)

echo "The reversed string: $str"

Output:

The reversed string: ylpmisxuniL

Example 6: Reverse a Sentence
You can reverse a sentence by reversing the order of words with the awk command:
Code:

#!/bin/bash

sentence="Hello from LinuxsimplY!!"

r_sentence=$(echo "$sentence" | awk '{ for(i=NF;i>0;i--) printf("%s ",$i);

print "" }')

echo "The reversed sentence is: $r_sentence"

Output:

The reversed sentence is: LinuxsimplY!! from Hello

Example 7: Capitalize the First Letter of a Word
For capitalizing only the first letter of a word, cut out the first letter to convert it and then
concatenate it with the rest of the string:

5

Code:

#!/bin/bash

str="linuxsimply!!"

cap_str=$(echo "${str:0:1}" | tr '[:lower:]' '[:upper:]')${str:1}

echo "The capitalized word is: $cap_str"

Output:
The capitalized word is: Linuxsimply!!

Example 8: Replace a Word in a Sentence
You can replace the first occurrence of a word in a string with a given word using the $(../../..):
Code:

#!/bin/bash

read -p "Enter a sentence: " str1

read -p "Enter the word to be replaced: " str2

read -p "Enter the new word: " str3

echo "Modified sentence: ${str1/$str2/$str3}"

Output:

Enter a sentence: I love Linux

Enter the word to be replaced: Linux

Enter the new word: Linuxsimply

Modified sentence: I love Linuxsimply

Loops in Shell Scripting

Loops are introduced in programming languages to run tasks in a repetitive manner. It iterates a
set of statements within a limit depending on conditions. Bash Scripting provides three types
of loops for statement iterations. These are the for loop, the while loop, and the until loop.
Syntaxes for each of the loops are listed below.

Syntaxes for Loops in Bash Scripting:

for while until

6

for item in item1 item2 ...
itemN

OR,

for ((i=initial_val;
i<=terminating_val; i++))

do

#code to execute

done

while [condition]

do

#code to
execute

done

until [condition
]

do

#code to
execute

done

Example 1: Print Numbers from 5 to 1
You can use the “until” loop in bash to print a number sequence. In this case, specify the
condition to stop the loop inside “until []”:
Code:

#!/bin/bash

n=5

until [$n == 0]

do

echo $n

n=$((n-1))

done

Output:

5

4

3

2

1

Example 2: Print Even Numbers From 1 to 10
To print the even number in a range, check the even number condition inside the for loop before
printing the number:
Code:

#!/bin/bash

for ((i=1; i<=10; i++))

7

do

if [$((i%2)) == 0]

then

echo $i

fi

done

Output:

2

4

6

8

10

Example 3: Print the Multiplication Table of a Number
Use the simple echo command inside a “for” loop to display the Multiplication Table of a
number:
Code:

#!/bin/bash

read -p "Enter a number: " num

for ((i=1; i<=10; i++))

do

echo "$num x $i = $((num*i))"

done

Output:

Enter a number: 12

12 x 1 = 12

12 x 2 = 24

12 x 3 = 36

12 x 4 = 48

12 x 5 = 60

12 x 6 = 72

12 x 7 = 84

12 x 8 = 96

12 x 9 = 108

12 x 10 = 120

Example 4: Calculate the Sum of Digits of a Given Number
For calculating the sum of digits of a given number, extract each digit using “%” operator and
store the summation in a fixed variable using the loop:

8

Code:

#!/bin/bash

read -p "Enter a number: " num

sum=0

while [$num -gt 0]

do

dig=$((num%10))

sum=$((sum+dig))

num=$((num/10))

done

echo "The sum of digits of the given number: $sum"

Output:

Enter a number: 1567

The sum of digits of the given number: 19

Example 5: Calculate the Factorial of a Number
Calculate the factorial of a number by running multiplications inside a “for” loop:
Code:

#!/bin/bash

read -p "Enter a number: " num

temp=1

for ((i=1; i<=$num; i++))

do

temp=$((temp*i))

done

echo "The factorial of $num is: $temp"

Output:

Enter a number: 6

The factorial of 6 is: 720

Example 6: Calculate the Sum of the First “n” Numbers
To calculate the sum of the first n numbers run a for loop and addition operation till n:
Code:

#!/bin/bash

read -p "Enter a number: " num

sum=0

for ((i=1; i<=$num; i++))

do

sum=$((sum + i))

9

done

echo "Sum of first $num numbers: $sum"

Output:

Enter a number: 100

Sum of first 100 numbers: 5050

Arrays in Shell Scripting

Arrays, in general, are a set or collection of data of similar types. Bash arrays differ from arrays
in other programming languages since bash does not necessarily differentiate between the
numbers or string data types. Therefore, an array in bash can store both numbers and strings at
the same time. Follow the examples below to learn more about array operations in bash
scripting.

Example 1: Find the Smallest and Largest Elements in an Array
For finding the smallest and largest element in a given array, first initialize a small and a large
number. Then compare the array elements with these numbers inside any loop:
Code:

#!/bin/bash

arr=(24 27 84 11 99)

echo "Given array: ${arr[*]}"

s=100000

l=0

for num in "${arr[@]}"

do

if [$num -lt $s]

then

s=$num

fi

if [$num -gt $l]

then

l=$num

fi

done

echo "The smallest element: $s"

echo "The largest: $l"

Output:

Given array: 24 27 84 11 99

The smallest element: 11

The largest: 99

10

Example 2: Sort an Array of Integers in Ascending Order
You can sort an array of integers by converting it into a list of integers using “tr ‘\n’”. The list of
integers is sorted with the “sort -n” command and then converted back into an array:
Code:

#!/bin/bash

arr=(24 27 84 11 99)

echo "Given array: ${arr[*]}"

arr=($(echo "${arr[*]}" | tr ' ' '\n' | sort -n | tr '\n' ' '))

echo "Sorted array: ${arr[*]}"

Output:

Given array: 24 27 84 11 99

Enter an element to remove: 11

Resultant array: 24 27 84 99

Example 3: Remove an Element from an Array
In bash, you can simply remove an element from an array using the pattern substitution
concept. The syntax ${arr[@]/$val} contains all the elements of the original array “arr” except
for any occurrences of the value $val:
Code:

#!/bin/bash

arr=(24 27 84 11 99)

echo "Given array: ${arr[*]}"

read -p "Enter an element to remove: " val

arr=("${arr[@]/$val}")

echo "Resultant array: ${arr[*]}"

Output:

Given array: 24 27 84 11 99

Enter an element to remove: 11

Resultant array: 24 27 84 99

Example 4: Inserting an Element Into an Array
For inserting an element into an array, split the array in the given index and insert the element:
Code:

#!/bin/bash

arr=(24 27 84 11 99)

echo "Given array: ${arr[*]}"

read -p "Enter an element to insert: " new_val

read -p "Enter the index to insert the element: " index

11

arr=("${arr[@]:0:$index}" "$new_val" "${arr[@]:$index}")

echo "The updated array: ${arr[@]}"

Output:

iven array: 24 27 84 11 99

Enter an element to insert: 100

Enter the index to insert the element: 3

The updated array: 24 27 84 100 11 99

Example 5: Slicing an Array Using Bash Script
Slice an array in Bash by placing the indices to slice inside the ${arr[@]:$index1:$index2}
pattern:
Code:

#!/bin/bash

arr=(24 27 84 11 99)

echo "Given array: ${arr[*]}"

read -p "Enter 1st index of slice: " index1

read -p "Enter 2nd index of slice: " index2

sliced_arr=("${arr[@]:$index1:$index2}")

echo "The sliced array: ${sliced_arr[@]}"

Output:

Given array: 24 27 84 11 99

Enter 1st index of slice: 1

Enter 2nd index of slice: 3

The sliced array: 27 84 11

Example 6: Calculate the Average of an Array of Numbers
Find the sum of array elements using a “for” loop and divide it by the number of elements i.e.
${#arr[@]}:
Code:

#!/bin/bash

echo "Enter an array of numbers (separated by space):"

read -a arr

sum=0

for i in "${arr[@]}"

do

sum=$((sum+i))

done

avg=$((sum/${#arr[@]}))

echo "Average of the array elements: $avg"

12

Output:

Enter an array of numbers (separated by space):

23 45 11 99 100

Average of the array elements: 55

Example 7: Find the Length of an Array
To find the length of an array simply use the syntax: ${#arr[@]}:
Code:

#!/bin/bash

arr=(24 27 84 11 99)

echo "Given array: ${arr[*]}"

len=${#arr[@]}

echo "The length of the array: $len"

Output:

Given array: 24 27 84 11 99

The length of the array: 5

Functions in Shell Scripting
Functions are one of the popular concepts of programming languages. It is a piece of code that
can be called and executed as many times as you want. Thus, functions offer efficiency, code
optimization, and minimization. Functions in Bash work in a similar way as functions in other
programming languages. However, there are some rules and syntaxes that you must follow
while using them in your script.

The syntax for Function in Shell Scripting:

FUNCTION_NAME () {

#codes to execute

}

Or,

FUNCTION_NAME () { #code to execute; }

The rules for Function in Shell Scripting are as follows:

13

● Functions must be defined before using/calling them.

● You may pass arguments to functions while calling them.

● To access arguments inside the function, use $1, $2, $3 … and so on according to
the number and sequence of arguments passed.

● The scope of the variables declared inside a function remains within the function.

Example 1: Check if a String is a Palindrome
Write the code to check a palindrome inside the function “Palindrome()” and call it by passing
the desired string:
Code:

#!/bin/bash

Palindrome () {

s=$1

if ["$(echo $s | rev)" == "$str"]

then

echo "The string is a Palindrome"

else

echo "The string is not a palindrome"

fi

}

read -p "Enter a string: " str

Palindrome "$str"

Output:

Enter a string: wow

The string is a Palindrome

Example 2: Check if a Number is Prime
Create the “Prime()” function that returns whether the parameter passed is prime or not:
Code:

#!/bin/bash

Prime () {

num=$1

if [$num -lt 2]

then

14

echo "The number $num is Not Prime"

return

fi

for ((i=2; i<=$num/2; i++))

do

if [$((num%i)) -eq 0]

then

echo "The number $num is Not Prime"

return

fi

done

echo "The number $num is Prime"

}

read -p "Enter a number: " num

Prime "$num"

Output:

Enter a number: 2

The number 2 is Prime

Example 3: Convert Fahrenheit to Celsius
Here, the function “Celsius()” runs the necessary formula on the passed temperature value in
Farenheit to convert it into Celsius:
Code:

#!/bin/bash

Celsius () {

f=$1

c=$((($f-32)*5/9))

echo "Temperature in Celsius = $c°C"

}

read -p "Enter temperature in Fahrenheit:" f

Celsius $f

Output:

Enter temperature in Fahrenheit:100

Temperature in Celsius = 37°C

Example 4: Calculate the Area of a Rectangle
Write the formula to calculate the area of a rectangle inside the function “Area()” and call it by
passing the height and width:
Code:

15

#!/bin/bash

Area() {

width=$1

height=$2

area=$(($width * $height))

echo "Area of the rectangle is: $area"

}

read -p "Enter height and width of the ractangle:" h w

Area $h $w

Output:

Enter height and width of the ractangle:10 4

"Area of the rectangle is: 40"

Example 5: Calculate the Area of a Circle
Write the formula to calculate the area of a circle inside the function “Area()” and call it by
passing the given radius:
Code:

#!/bin/bash

Area () {

radius=$1

area=$(echo "scale=2; 3.14 * $radius * $radius" | bc)

echo "Area of a circle with radius $radius is $area."

}

read -p "Enter radius of the circle:" r

Area $r

Output:

Enter radius of the circle:4

Area of a circle with radius 4 is 50.24.

Example 6: Grading System
The function “Grade()” runs the necessary conditions to divide the number ranges into grades
and returns the resultant grade:
Code:

#!/bin/bash

Grade() {

score=$1

if (($score >= 80)); then

grade="A+"

elif (($score >= 70)); then

16

grade="A"

elif (($score >= 60)); then

grade="B"

elif (($score >= 50)); then

grade="C"

elif (($score >= 40)); then

grade="D"

else

grade="F"

fi

echo "The grade for mark $s is $grade"

}

read -p "Enter a score between 1-100:" s

Grade $s

Output:

Enter a score between 1-100:76

"The grade for mark 76 is A"

Task-Specific Bash Scripts
In addition to the conceptual bash scripts, in this section, you will find some task-specific script
examples. These scripts are mostly related to the regular process that you run on your system.
Hence, explore the examples below to get more hands-on experience with Shell Scripting.

Regular Expression Based Scripts

1. Search for a Pattern inside a File
The script given below will take a filename and a pattern as user input and search it within the
file. If the pattern is found then the lines having the pattern will be displayed on the screen along
with line numbers. Otherwise, it will print a message saying the pattern did not match:
Code:

#!/bin/bash

read -p "Enter filename: " filename

read -p "Enter a pattern to search for: " pattern

grep -w -n $pattern $filename

if [$? -eq 1]; then

echo "Pattern did not match."

fi

Output:

17

Enter filename: poem.txt

Enter a pattern to search for: daffodils

4:A host, of golden daffodils;

27:And dances with the daffodils.

2. Replace a Pattern in a Fille
The following script will take a file name and a pattern from the user to replace it with a new
pattern. Finally, it will display the updated lines on the terminal. If the pattern to replace does not
exist, then it will show an error message:
Code:

#!/bin/bash

read -p "Enter filename: " filename

read -p "Enter a pattern to replace: " pattern

read -p "Enter new pattern: " new_pattern

grep -q $pattern $filename

if [$? -eq 0]; then

sed -i "s/$pattern/$new_pattern/g" $filename

echo "Updated Lines: "

grep -w -n $new_pattern $filename

else

echo "Error! Pattern did not match."

fi

Output:

Enter filename: poem.txt

Enter a pattern to replace: daffodils

Enter new pattern: dandelions

Updated Lines:

4:A host, of golden dandelions;

27:And dances with the dandelions.

File Operations with Shell Scripts

3. Take Multiple Filenames and Prints their Contents
The below script is for reading the contents of multiple files. It will take the file names as user
input and display their contents on the screen. If any filename does not exist, it will show a
separate error message for that file:
Code:

#!/bin/bash

read -p "Enter the file names: " files

18

IFS=' ' read -ra array <<< "$files"

for file in "${array[@]}"

do

if [-e "$file"]; then

echo "Contents of $file:"

cat "$file"

else

echo "Error: $file does not exist"

fi

done

Output:

Enter the file names: message.txt passage.txt

Contents of message.txt:

"Merry Christmas! May your happiness be large and your bills be small."

Contents of passage.txt:

The students told the headmaster that they wanted to celebrate the victory

of the National Debate Competition.

4. Copy a File to a New Location
You can copy a file to another location using the bash script below. It will read the filename and
destination path from the terminal and copy the file if it exists in the current directory. If the file is
not there, the script will return an error message.
Code:

#!/bin/bash

read -p "Enter the file name: " file

read -p "Enter destination path:" dest

if [-e "$file"]; then

cp $file $dest

file_location=$(readlink -f $dest)

echo "A copy of $file is now located att: $file_location"

else

echo "Error: $file does not exist"

fi

Output:

Enter the file name: poem.txt

Enter destination path:/home/susmit/Documents

A copy of poem.txt is now located at: /home/susmit/Documents

19

5. Create a New File and Write Text Inside
The script given below is for creating a new file and writing text inside the file. You will be able to
write into the file from the command line. Upon completion, it will show a message saying the
file has been created.
Code:

#!/bin/bash

read -p "Enter the file name: " file

echo "Enter text to write:"

read text

echo "$text" > "$file"

echo "-----------------------------------"

echo "The File $file is created!"

Output:

Enter the file name: text_file1.txt

Enter text to write:

In English, there are three articles: a, an, and the. Articles are used

before nouns or noun equivalents and are a type of adjective. The definite

article (the) is used before a noun to indicate that the identity of the

noun is known to the reader.

The File text_file1.txt is created!

6. Compare the Contents of Two Given Files
The following bash script takes two file names as user input and compares there contents. If
one or either of the files does not exist in the current directory it shows an error to the user.
Otherwise prints the result if the files are identical or not.
Code:

#!/bin/bash

read -p "Enter the 1st file name: " file1

read -p "Enter the 2nd file name: " file2

if [! -f $file1] || [! -f $file2]

then

echo "Error! One of the files does not exists."

exit 1

fi

if cmp -s "$file1" "$file2"

then

echo "The Files $file1 and $file2 are identical."

else

echo "The Files $file1 and $file2 are different."

20

fi

Output:

Enter the 1st file name: article1.txt

Enter the 2nd file name: text_file1.txt

The Files article1.txt and text_file1.txt are identical.

7. Delete a Given File If It Exists
This is a script for checking a file's existence before running deleting the file. The script will take
the file’s name from the user and delete it if it is found in the current directory. Otherwise, it will
display an error.
Code:

#!/bin/bash

read -p "Enter the file name for deletion: " file

if [-f $file]

then

rm $file

echo "The file $file deleted successfully!"

else

echo "Error! The file $file does not exist."

fi

Output:

Enter the file name for deletion: article1.txt

The file article1.txt deleted successfully!

8. Renames a File from Script
You can rename an existing file using the script below. All you have to do is enter the old
filename and the new filename. The script will rename the file if it is available in the directory. If
the file is not in the path, then it will display an error message.
Code:

#!/bin/bash

read -p "Enter the file name: " file

read -p "Enter new file name: " new_file

if [-f $file]

then

mv "$file" "$new_file"

echo "The file $file has been renamed as $new_file!"

else

echo "Error! The file $file does not exist."

fi

21

Output:

Enter the file name: poem.txt

Enter new file name: daffodils.txt

The file poem.txt has been renamed as daffodils.txt!

File Permission Based Shell Scripts

9. Check the Permissions of a file
The script below checks permissions for the given filename and lists the active permissions of
the current user. If there does not exist any file of the input file name, then it displays an error
message.
Code:

#!/bin/bash

read -p "Enter the file name: " file

if [-f $file]; then

if [-r "$file"]; then

echo "Readable"

fi

if [-w "$file"]; then

echo "Writable"

fi

if [-x "$file"]; then

echo "Executable"

fi

else

echo "Error! The file $file does not exist."

fi

Output:

Enter the file name: daffodils.txt

Readable

Writable

10. Sets the Permissions of a Directory for the Owner
The following script the give current user read, write, and execute permissions of a directory.
The directory name is taken as user input and if the directory does not exist, it displays an error
message.
Code:

#!/bin/bash

read -p "Enter the directory name: " dir

22

if [-d $dir]; then

chmod u+rwx $dir

echo "Directory permissions have been updated!"

else

echo "Error! The directory $dir does not exist."

fi

Output:

Enter the file name: daffodils.txt

Enter file owner name: tom

[sudo] password for susmit:

Changed file owner to tom!

11. Change the File Owner
The script here changes the owner of a file if the file exists in the directory. Since changing
ownership requires administrator permissions, you will need to give the sudo password while
running the script. Upon completion of the task, the script will show a success message.
Code:

#!/bin/bash

read -p "Enter the file name: " file

read -p "Enter file owner name: " owner

if [-f $file]; then

sudo chown $owner $file

echo "Changed file owner to $owner!"

else

echo "Error! The file $file does not exist."

fi

Output:

Enter the file name: daffodils.txt

Enter file owner name: tom

[sudo] password for susmit:

Changed file owner to tom!

12. File Permissions: Change the Overall Permissions of a File
You can change the permissions of an existing file using the script below. All you have to do is
enter the filename, the permissions in absolute mode, and the sudo password to activate
administrative privileges. The script will update the file permissions if it is available in the
directory. If the file is not in the path, then it will display an error message.
Code:

#!/bin/bash

23

read -p "Enter the file name: " file

read -p "Enter new permissions in Absolute Mode: " permissions

if [-f $file]; then

sudo chmod $permissions $file

echo "Permissions for the file $file has been changed!"

else

echo "Error! The file $file does not exist."

fi

Output:

Enter remote host IP address:192.168.0.6

PING 192.168.0.6 (192.168.0.6) 56(84) bytes of data.

64 bytes from 192.168.0.6: icmp_seq=1 ttl=64 time=4.10 ms

--- 192.168.0.6 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 4.095/4.095/4.095/0.000 ms

Host is up!

Network Connection Based Shell Scripts

13. Check a Remote Host for its Availability
The following script checks the network status of a remote host. You will need to enter the host
IP address as input and it will return a message saying if the host is up or down.
Code:

#!/bin/bash

read -p "Enter remote host IP address:" ip

ping -c 1 $ip

if [$? -eq 0]

then

echo "-----------------------"

echo "Host is up!"

echo "-----------------------"

else

echo "-----------------------"

echo "Host is down!"

echo "-----------------------"

fi

Output:

24

Enter remote host IP address:192.168.0.6

PING 192.168.0.6 (192.168.0.6) 56(84) bytes of data.

64 bytes from 192.168.0.6: icmp_seq=1 ttl=64 time=4.10 ms

--- 192.168.0.6 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 4.095/4.095/4.095/0.000 ms

Host is up!

14. Test if a Remote Port is Open
The script below checks the network connection in a system port. It takes a host address and
port number as the input. If the connection to the host through the port number is successful
then it verifies that the port is open. Otherwise, it returns a message saying the port is closed.
Code:

#!/bin/bash

read -p "Enter host address:" HOST

read -p "Enter port number:" PORT

nc -z -v -w5 "$HOST" "$PORT"

if [$? -eq 0]; then

echo "--"

echo "Port $PORT on $HOST is open"

echo "--"

else

echo "--"

echo "Port $PORT on $HOST is closed"

echo "--"

fi

Output:

Enter host address:192.168.0.107

Enter port number:80

Connection to 192.168.0.107 80 port [tcp/http-alt] succeeded!

--

Port 80 on 192.168.0.107 is open

--

25

15. Checking Network Connectivity
The below script checks network connectivity to a remote host via the internet. If there is a
successful connection then it returns the status “internet connection is up”. Otherwise, returns
“Internet connection is down”.
Code:

#!/bin/bash

read -p "Enter a host address:" HOST

if ping -q -c 1 -W 1 $HOST >/dev/null; then

echo "--"

echo "Internet connection is up"

echo "--"

else

echo "--"

echo "Internet connection is down"

echo "--"

fi

Output:

Enter a host address:192.168.0.107

--

Internet connection is up

--

16. Automating Network Configuration
The following bash script configures a network IP address and subnet mask. Upon
configuration, it sets up the gateway and DNS server at the given addresses. All four IP
addresses are passed as user input. It will return an error message if it is unsuccessful at
running any of the commands.
Code:

#!/bin/bash

echo "Enter network configuration variables:"

read -p "Enter an IP address: " ip_addr

read -p "Enter a subnet mask: " subnet_mask

read -p "Enter a Gateway address: " gateway

read -p "Enter a DNS address: " dns

Configure network interface

sudo ifconfig eth0 $ip_addr netmask $subnet_mask up

if [$? -eq 0]; then

Set default gateway

26

sudo route add default gw $gateway

if [$? -eq 0]; then

Set DNS servers

sudo echo "nameserver $dns" > /etc/resolv.conf

if [$? -eq 0]; then

echo "--"

echo "Network configuration completed"

echo "--"

else

echo "--"

echo "Error while setting the DNS server."

fi

else

echo "--"

echo "Error while setting the default gateway."

fi

else

echo "--"

echo "Network Configuration Failed."

fi

Syntax to run the Script: sudo bash bin/adv_example16.sh
Requirement: ifconfig must be installed.
Output:

Enter network configuration variables:

Enter an IP address: 192.168.0.108

Enter a subnet mask: 255.255.255.0

Enter a Gateway address: 192.168.0.1

Enter a DNS address: 8.8.8.8

--

Network configuration completed

--

17. Check if a Process is Running
The given script can check if a process is currently running on your system or not. You will need
to enter your desired process name and the script will display the process’s current status.
Code:

#!/bin/bash

read -p "Enter process name: " process

if pgrep $process > /dev/null

then

echo "Process is running."

27

https://linuxsimply.com/ifconfig-command-in-linux/#Installing_the_ifconfig_Command_in_Linux

else

echo "Process is not running."

fi

Output:

Enter process name: bash

Process is running.

Process Management Based Shell Scripts

18. Start a Process if It's Not Already Running
You can use the script given below to start a process. The process name is passed as user
input to the script. If the process is already running then it will return a message saying “The
Process is already running”. Otherwise, It will start the desired process.
Code:

#!/bin/bash

read -p "Enter process name: " process

if ! pgrep $process > /dev/null

then

/path/to/process_name &

echo "The Process $process has now started."

else

echo "The Process is already running."

fi

Output:

Enter process name: bash

The Process is already running.

19. Stop a Process
The script below can stop a process if it runs in the system. The user has to enter a process
name as the script input. If the process is currently running then the script will terminate that
process. Otherwise, it says, “The process is not running”.
Code:

#!/bin/bash

read -p "Enter process name: " process

if pgrep $process > /dev/null

then

pkill $process

echo "The Process $process has stopped."

28

else

echo "The Process $process is not running."

fi

Output:

Enter process name: nslookup

The Process nslookup has stopped.

20. Restart a Process
The following script aims to take a process name as input and then restart it. If the process is
already running then the script kills the process and starts over. After the first kill command, it
waits for 5 seconds. If by then the process does not terminate then it will force kill that process
before restarting.
Code:

#!/bin/bash

read -p "Enter process name: " process

pid=$(pgrep -f $process)

if [-n "$pid"]; then

kill $pid

sleep 5

if pgrep -f $process> /dev/null; then

echo "Process did not exit properly, force killing..."

kill -9 $pid

fi

fi

process_path=$(which $process)

$process_path & echo "Process restarted."

Output:

Enter process name: firefox

The Process firefox is running.

The Process firefox is running.

21. Monitor a Process and Restart It If Crashes
The script here, takes a process name as input from the user and checks for its status every 5
seconds. If the process is running without any issues then it shows a message saying “The
process is running”. Otherwise, it restarts the process and continues to check its status again.
Code:

#!/bin/bash

read -p "Enter process name: " process

29

process_path=$(which $process)

while true

do

if pgrep $process > /dev/null

then

echo "The Process $process is running."

sleep 5

else

$process_path &

echo "The Process $process restarted."

continue

fi

done

Output:

Enter process name: firefox

The Process firefox is running.

The Process firefox is running.

22. Display the Top 10 CPU-Consuming Processes
The script below lists the top 10 CPU-consuming processes. It prints the Process ID, the
percentage of CPU usage along with the command that runs each process.
Code:

#!/bin/bash

echo "The current top 10 CPU-consuming processes: "

ps -eo pid,%cpu,args | sort -k 2 -r | head -n 11

Output:

The current top 10 CPU-consuming processes:

PID %CPU COMMAND

2161 0.6 /usr/bin/gnome-shell

1126 0.5 /usr/sbin/mysqld

7593 0.5 /usr/libexec/gnome-terminal-server

832 0.2 /usr/bin/java -Djava.awt.headless=true -jar

/usr/share/java/jenkins.war --webroot=/var/cache/jenkins/war

--httpPort=8080

668 0.1 /usr/bin/vmtoolsd

5498 0.1 gjs

/usr/share/gnome-shell/extensions/ding@rastersoft.com/ding.js -E -P

/usr/share/gnome-shell/extensions/ding@rastersoft.com -M 0 -D

0:0:1918:878:1:34:0:0:0:0

104 0.0 [zswap-shrink]

30

86 0.0 [xenbus_probe]

26 0.0 [writeback]

39 0.0 [watchdogd]

23. Display the Top 10 Memory-Consuming Processes
The given script lists the top 10 memory-consuming processes. It prints the Process ID,
percentage of memory usage as well as the commands for running each process.
Code:

#!/bin/bash

echo "The current top 10 Memory-consuming processes: "

ps -eo pid,%mem,args | sort -k 2 -r | head -n 11

Output:

The current top 10 Memory-consuming processes:

PID %MEM COMMAND

1126 9.7 /usr/sbin/mysqld

832 6.8 /usr/bin/java -Djava.awt.headless=true -jar

/usr/share/java/jenkins.war --webroot=/var/cache/jenkins/war

--httpPort=8080

2161 6.7 /usr/bin/gnome-shell

2516 2.1 /usr/bin/Xwayland :0 -rootless -noreset -accessx -core -auth

/run/user/1000/.mutter-Xwaylandauth.G8UR41 -listen 4 -listen 5 -displayfd 6

-initfd 7

2585 1.9 /usr/libexec/gsd-xsettings

1209 1.5 /usr/bin/dockerd -H fd://

--containerd=/run/containerd/containerd.sock

5498 1.5 gjs

/usr/share/gnome-shell/extensions/ding@rastersoft.com/ding.js -E -P

/usr/share/gnome-shell/extensions/ding@rastersoft.com -M 0 -D

0:0:1918:878:1:34:0:0:0:0

2966 1.4 /usr/bin/gedit --gapplication-service

7593 1.3 /usr/libexec/gnome-terminal-server

2381 1.3 /usr/libexec/evolution-data-server/evolution-alarm-notify

24. Kill Processes of a Specific User
The following script is created to kill all the processes of a specific user. The Specified
username is taken as user input. After receiving the username, all the running processes of that
user are terminated.
Code:

#!/bin/bash

read -p "Enter username: " user

31

sudo pkill -u $user

echo "All processes of user $user have been terminated."

Output:

Enter username: tom

[sudo] password for susmit:

All processes of user tom have been terminated.

25. Kill All Processes That are Consuming More Than a Certain
Amount of CPU
This script takes a CPU usage percentage as user input and terminates all the running
processes that are consuming more than the entered CPU threshold. If there is no process
above that threshold, then it returns a message saying there are no such processes.
Code:

#!/bin/bash

read -p "Enter CPU usage threshold: " threshold

if ["$(ps -eo pid,%cpu | awk -v t=$threshold '$2 > t {print $1}' | wc -c)"

-gt 0]; then

for pid in $(ps -eo pid,%cpu | awk -v t=$threshold '$2 > t {print $1}')

do

kill $pid

done

echo "All processes consuming more than $threshold% CPU killed."

else

echo "There are no process consuming more than $threshold% CPU."

fi

Output:

Enter CPU usage threshold: 10

There are no process consuming more than 10% CPU.

26. Kill All Processes That are Consuming More Than a Certain
Amount of Memory
This script takes a memory space percentage as user input and terminates all the running
processes that are consuming more than the entered space threshold. If there is no process
above that threshold, then it returns a message saying there are no such processes.
Code:

#!/bin/bash

read -p "Enter CPU usage threshold: " threshold

32

if ["$(ps -eo pid,%cpu | awk -v t=$threshold '$2 > t {print $1}' | wc -c)"

-gt 0]; then

for pid in $(ps -eo pid,%cpu | awk -v t=$threshold '$2 > t {print $1}')

do

kill $pid

done

echo "All processes consuming more than $threshold% CPU killed."

else

echo "There are no process consuming more than $threshold% CPU."

fi

Output:

Enter memory usage threshold (in KB): 10

There are no process consuming more than 10 KB memory.

System Information Based Shell Scripts

27. Check the Number of Logged-in Users
You view the find the number of logged-in users in your system with the script below. It counts
the users that are logged in only at the current time.
Code:

#!/bin/bash

users=$(who | wc -l)

echo "Number of currently logged-in users: $users"

Output:

Number of currently logged-in users: 2

28. Check the Operating System Information
The following script displays information regarding the machine’s operating system. It retrieves
and lists the os name, release, version as well as system architecture.
Code:

#!/bin/bash

os_name=$(uname -s)

os_release=$(uname -r)

os_version=$(cat /etc/*-release | grep VERSION_ID | cut -d '"' -f 2)

os_arch=$(uname -m)

echo "OS Name: $os_name"

33

echo "OS Release: $os_release"

echo "OS Version: $os_version"

echo "OS Architecture: $os_arch"

Output:

OS Name: Linux

OS Release: 5.19.0-38-generic

OS Version: 22.04

OS Architecture: x86_64

29. Check the System’s Memory Usage
The script given below calculates the percentage of memory being used. The “$3*100/$2”
expression converts the usage into percentages and displays the output with two decimal
places.
Code:

#!/bin/bash

mem=$(free -m | awk 'NR==2{printf "%.2f%%", $3*100/$2}')

echo "Current Memory Usage: $mem"

Output:

Current Memory Usage: 72.48%

30. Check the System’s Disk Usage
The following script displays the percentage of disk space used on the root (/) file system. It gets
the file system’s disk space usage in a human-readable format and prints only the used
percentage.
Code:

#!/bin/bash

disk=$(df -h | awk '$NF=="/"{printf "%s", $5}')

echo "Current Disk Usage: $disk"

Output:

System's network information:-

IP Address: 192.168.0.109

Gateway: 192.168.0.1

DNS Server: 127.0.0.53

31. Check the System’s Network Information
Use the script below to get the network information of your system. It lists the system’s IP
address, Gateway address, and DNS server address.
Code:

34

#!/bin/bash

echo " System's network information:-"

ip=$(hostname -I)

echo "IP Address: $ip"

gw=$(ip route | awk '/default/ { print $3 }')

echo "Gateway: $gw"

dns=$(grep "nameserver" /etc/resolv.conf | awk '{print $2}')

echo "DNS Server: $dns"

Output:

System's network information:-

IP Address: 192.168.0.109

Gateway: 192.168.0.1

DNS Server: 127.0.0.53

32. Check the Uptime
The given script can be used to find out the uptime of the system. It will return two values. The
first one is the current time, and the second one is the uptime i.e. for how long the system has
been running. In this example, “up 16:19” indicates that the system has been up for 16 hours
and 19 minutes.
Code:

#!/bin/bash

uptime | awk '{print $1,$2,$3}' | sed 's/,//'

echo "Uptime: $uptime"

Output:

Uptime: 00:16:38 up 16:19

33. Check the System Load Average
The following script returns the system’s Load Average. It will extract the load averages for the
past 1, 5, and 15 minutes from the system’s uptime and display their average on the screen.
Code:

#!/bin/bash

loadavg=$(uptime | awk '{print $10,$11,$12}')

echo "Load Average: $loadavg"

Output:

Load Average: 0.36

35

34. Check the System Architecture
To determine your current machine's architecture you can run the following script. It returns the
system’s architecture. In this example, x86_64 indicates that the machine is using the 64-bit
version of the x86 architecture.
Code:

#!/bin/bash

arch=$(uname -m)

echo "System Architecture: $arch"

Output:

System Architecture: x86_64

35. Count the Number of Files in the System
You can use the script below to find the available number of files on your machine. It runs the
find command to check every file on the system and returns the total file count.
Code:

#!/bin/bash

count=$(find / -type f | wc -l)

echo "Number of files in the system: $count."

Output:

Number of files in the system: 500090.

Advanced Tasks with Shell Scripts

36. Automated Backup
The following script creates a backup file of a given directory. The source directory path and the
destination directory path are user inputs. The backup file is named along with the current date
for keeping track. Upon completion of the task, it returns the path where the backup archive
resides.
Code:

#!/bin/bash

read -p "Enter path of the directory to backup: " source_dir

read -p "Enter destination path for backup: " backup_dir

date=$(date +%Y-%m-%d)

backup_file="backup-$date.tar.gz"

Create backup directory if it doesn't exist

if [! -d "$backup_dir"]; then

mkdir -p "$backup_dir"

fi

36

Create backup archive

tar -czf "$backup_dir/$backup_file" "$source_dir"

echo "Completed Creating backup at: $backup_dir."

Output:

Enter filename to write alert: alert.log

Enter disk space threshold: 70

Alert for "/dev/sda3: Almost out of disk space 80% as on Thu May 11

01:54:50 AM EDT 2023

37. Generate Alert if Disk Space Usage Goes Over a Threshold
The script below generates an alert if the disk space usage goes over a threshold. It takes the
threshold and a filename from the user. The alert is then generated in that file along with the
disk space usage. If the space consumed is less than the threshold than the file remains empty.
Code:

#!/bin/bash

read -p "Enter filename to write alert: " file

touch $file

read -p "Enter disk space threshold: " threshold

df -H | grep -vE "^Filesystem|tmpfs|cdrom" | awk '{ print $5 " " $1 }' |

while read output;

do

usage=$(echo $output | awk '{ print $1}' | cut -d'%' -f1)

if [$usage -ge $threshold]; then

partition=$(echo $output | awk '{ print $2 }')

echo "Alert for \"$partition: Almost out of disk space $usage% as on

$(date) " >> $file

break

fi

done

cat $file

Output:

Enter filename to write alert: alert.log

Enter disk space threshold: 70

Alert for "/dev/sda3: Almost out of disk space 80% as on Thu May 11

01:54:50 AM EDT 2023

38. Create a New User and Add to Sudo Group
You can use the following script to create a new sudo user in your Linux system. The script will
take the username and password as input to create the user. It will also create a home directory
for the user besides adding the account to the sudo group.

37

Code:

#!/bin/bash

read -p "Enter username: " username

read -p "Enter password: " password

useradd -m -s /bin/bash -p $(openssl passwd -1 $password) $username

if [$? -eq 0]; then

usermod -a -G sudo $username

mkdir /home/$username/mydir

chown -R $username:$username /home/$username/mydir

usermod -d /home/$username/mydir $username

echo "$username ALL=(ALL) NOPASSWD:ALL" >> /etc/sudoers

echo "User $username created successfully!"

echo "User $username added to sudo group!"

else

echo "Error while creating user!"

fi

Syntax to run the Script: sudo bash bin/adv_example38.sh
Output:

Enter username: susmit

Enter password: linuxsimply

User susmit created successfully!

User susmit added to sudo group!

39. Monitor Network Traffic
The following script monitors the receiving (RX) and transmitting(TX) packets over a network.
User needs to enter the interface name which they want to monitor. Then in every 10 seconds it
will display the total packet received and transmitted and their size in KB.
Code:

#!/bin/bash

read -p "Enter network interface to monitor traffic (ex. eth0): " net

while true

do

rx=$(ifconfig $net | grep "RX packets" | awk '{print $3 $6 $7}')

tx=$(ifconfig $net | grep "TX packets" | awk '{print $3 $6 $7}')

echo "$(date) RX: $rx, TX: $tx"

sleep 10

38

done

Output:

Enter network interface to monitor traffic (ex. eth0): ens33

Wed May 10 16:55:40 +06 2023 RX: 342(40.4KB), TX: 171(18.4KB)

Wed May 10 16:55:51 +06 2023 RX: 355(41.6KB), TX: 178(19.0KB)

Wed May 10 16:56:01 +06 2023 RX: 361(42.0KB), TX: 178(19.0KB)

Wed May 10 16:56:11 +06 2023 RX: 361(42.0KB), TX: 178(19.0KB)

40. Monitor CPU and Memory Usage
The script below can be used to monitor the CPU and Memory usage of a system. It extracts the
CPU and Memory usage information every 10 seconds and converts them into a percentage for
displaying on the screen.
Code:

#!/bin/bash

while true

do

cpu=$(top -bn1 | grep "Cpu(s)" | sed "s/.*, *\([0-9.]*\)%* id.*/\1/" |

awk '{print 100 - $1"%"}')

mem=$(free -m | awk 'NR==2{printf "%.2f%%", $3*100/$2 }')

echo "$(date) CPU Usage: $cpu, Memory Usage: $mem"

sleep 10

done

Output:

Sun May 7 02:19:49 AM EDT 2023 CPU Usage: 29.4%, Memory Usage: 68.78%

Sun May 7 02:19:59 AM EDT 2023 CPU Usage: 7.1%, Memory Usage: 68.78%

Sun May 7 02:20:10 AM EDT 2023 CPU Usage: 25%, Memory Usage: 68.72%

Sun May 7 02:20:20 AM EDT 2023 CPU Usage: 17.6%, Memory Usage: 68.72%

Sun May 7 02:20:30 AM EDT 2023 CPU Usage: 6.2%, Memory Usage: 68.70%

41. Creating a Script and Adding It to PATH
You can use the script below to customize another script and make it runnable. The script here
will take another script name and the commands to write within this new script as user inputs.
After receiving the input values, it will update the permission modes of the desired script and
add it to the $PATH variable to make the new script runnable. After creation, you can run this
new script with the bash keyword.
Code:

#!/bin/bash

read -p "Enter a name for the command: " my_comm

echo "Enter commands to write on script:"

39

read comm

read -p "Enter path to the directory containing the command: " comm_path

Create script for custom command

echo "#!/bin/bash" > $my_comm.sh

echo "$comm" >> $my_comm.sh

Make script executable

chmod +x $my_comm.sh

Add script to PATH

export PATH="$PATH$comm_path/$my_comm.sh"

echo "A script called $my_comm has been created."

Output:

Enter a name for the command: echo_hello

Enter commands to write on script:

echo "Hello from custom command!!"

Enter path to the directory containing the command: /home/susmit/bin

A script called echo_hello has been created.

42. Running a Command At Regular Intervals
The script given below runs a command at a regular time interval. To achieve this task the user
has to enter the desired command and the interval for running that command. The interval
passed as input must be in the following format: m h dom mon dow.
Code:

#!/bin/bash

read -p "Enter command to run: " com

command_to_run=$(which $com)

read -p "Enter interval for running the command (m h dom mon dow): "

interval

Add command to crontab

(crontab -l ; echo "$interval $command_to_run") | sort - | uniq - | crontab

-

echo "Command added to crontab and will run at $interval"

Output:

Enter command to run: echo "1 Minute passed!" >> time.log

Enter interval for running the command (m h dom mon dow): * * * * *

Command added to crontab and will run at * * * * *

40

43. Downloading Files from a List of URLs
The following script takes a filename as input where a list of URLs should be stored. The script
will iterate through the list of URLs and download the available contents on the link. It displays
each download information on the terminal along with the “Completed Download” message.
Upon downloading files from all the URLs, it shows another message saying “All files
downloaded successfully!”.
Code:

#!/bin/bash

read -p "Enter the filename containing URLs: " url_file

while read -r url; do

filename=$(basename "$url")

curl -o "$filename" "$url"

echo "Completed Download $filename"

done < "$url_file"

echo

"--

------------------"

echo "All files downloaded successfully!"

Output:

Enter the filename containing URLs: urls.txt

% Total % Received % Xferd Average Speed Time Time Time

Current

Dload Upload Total Spent Left

Speed

0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:--

0curl: (6) Could not resolve host: linuxsimply.com

Completed Download Emacs-Keybindings-or-Shortcuts-in-Linux.pdf

curl: (3) URL using bad/illegal format or missing URL

Downloaded

% Total % Received % Xferd Average Speed Time Time Time

Current

Dload Upload Total Spent Left

Speed

0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:--

0curl: (6) Could not resolve host: linuxsimply.com

Completed Download Bash-Terminal-Keyboard-Shortcuts-for-Information.pdf

All files downloaded successfully!

41

44. Organizes Files in a Directory Based on Their File Types
The script given below organizes files in a directory depending on their type. The user needs to
give a destination directory path to organize the files along with the source directory path.

This script will create five directories: 1) Documents, 2) Images, 3) Music, 4) Videos, and 5)
Others only if they do not already exist on the destination path. Then, it will check all the files
and their extension and move them to the corresponding directory. If there is any unknown file
extension, then the script will move the file to the Others Directory.
Code:

#!/bin/bash

Specify the source and destination directories

read -p "Enter path to the source directory: " source_dir

read -p "Enter path to the destination directory: " dest_dir

Create the destination directories if they don't exist

mkdir -p "${dest_dir}/Documents"

mkdir -p "${dest_dir}/Images"

mkdir -p "${dest_dir}/Music"

mkdir -p "${dest_dir}/Videos"

mkdir -p "${dest_dir}/Others"

Move files to the appropriate directories based on their extensions

for file in "${source_dir}"/*; do

if [-f "${file}"]; then

extension="${file##*.}"

case "${extension}" in

txt|pdf|doc|docx|odt|rtf)

mv "${file}" "${dest_dir}/Documents"

;;

jpg|jpeg|png|gif|bmp)

mv "${file}" "${dest_dir}/Images"

;;

mp3|wav|ogg|flac)

mv "${file}" "${dest_dir}/Music"

;;

mp4|avi|wmv|mkv|mov)

mv "${file}" "${dest_dir}/Videos"

;;

*)

mv "${file}" "${dest_dir}/Others"

;;

42

esac

fi

done

echo "Files organized successfully!"

Output:

Enter path to the source directory: /home/susmit/Downloads

Enter path to the destination directory: /home/susmit/Downloads_Organized

Files organized successfully!

Conclusion
From complex task automation to efficient data manipulation, you now possess the ability to
tackle real-world challenges with confidence. Embrace the power of advanced shell scripting
and unlock a world of automation and efficiency.

43

Prepared By: Susmit Das Gupta

Web View: Advanced Shell Script With Examples [Free Downloads]

Copyright ©2024 linuxsimply.com| All rights reserved

https://linuxsimply.com/susmit-das-gupta/
https://linuxsimply.com/advanced-shell-script-examples/

