
19 Examples of Variables in Shell Script
Similar to every programming language, Bash also offers the concept of Variables. Variables in
shell scripting are containers for storing necessary information. They specify memory locations
in the system via characters or numeric or alphanumeric values. Values stored in these
locations are later accessed and manipulated by referring to their Variable names. In shell
scripting, reference to a variable is done by combining a variable name with the dollar sign ($)
i.e. $VARIABLE_NAME.

Rules for Variables in Shell Scripting...2
Shell Script Examples Using Variables... 2

Example 1: Defining Variables in a Bash Script...2
Example 2: Read, Store and Display Input Variable..3
Example 3: Reading User Input Variable with Prompt Message... 3
Example 4: Concatenating Multiple Variables... 3
Example 5: Passing Values to Variables as Command Line Arguments.................................4
Example 6: Deleting a Variable..4
Example 7: Getting the Length of a Variable... 5
Example 8: Checking If a Variable is Empty or Not... 5
Example 9: Print Environment Variable using Bash Script.. 5
Example 10: Changing Internal Field Separator(IFS)/Delimiter Variable.................................6
Example 11: Taking Input Variable as Password... 6
Example 12: Using Variables in Command Substitutions..6
Example 13: Writing and Reading Variables to a File..7
Example 14: Using Variables in for Loops... 7
Example 15: Using Variables in while Loops... 8
Example 16: Using Variables in until Loops...8
Example 17: Accessing Variables from Array..8
Example 18: Passing Variables to Functions...9
Example 19: Using Variables in Case Statements.. 9

Conclusion... 10

Rules for Variables in Shell Scripting
Variables in Shell Script need to follow a set of rules. Otherwise, you may face runtime errors.
These rules cover structures of accessing values stored in a variable, naming conventions of

https://linuxsimply.com/variables-in-shell-script-examples/
https://linuxsimply.com/bash-in-linux/

variables, defining the type of a variable, etc. Follow the list below to learn more about the rules
of variables in Shell scripting.

● Use the equal sign (=) to assign values to variable names.
● Variable names are case sensitive i.e. ‘A’ and ‘a’ are different.
● To refer to a variable use the dollar sign ($) i.e. $VARIABLE_NAME.
● While updating/changing the variable values use only the variable name with the

assignment operator(=) i.e. VARIABLE_NAME= NEW_VALUE.
● No need to define variable type while declaring variables.
● Enclose multiple words or string values within Single Quote (' ') to consider all

characters as input.

Syntax for Variables in Shell Scripting
VARIABLE_NAME=VALUE

Shell Script Examples Using Variables
Variables are one of the primary concepts in Shell Scripting. Therefore, examples using
variables are generally very basic. However, the application of variables cannot be avoided in
the advanced scripts as well. For your convenience, I have listed the basic shell script examples
below. Follow them to learn more about the applications of variables in Shell Scripting.

Example 1: Defining Variables in a Bash Script
In Bash Script, declare a variable by assigning(=) value to its reference. Furthermore, print the
assigned values using echo $(VARIABLE_NAME).
Code:

#!/bin/bash

Declaration of variables

name=Tom

age=12

Displaying variables

echo $name $age

Output:

Tom 12

Example 2: Read, Store and Display Input Variable
You can take user input with the read command and store it in a variable. Next, use echo
$(VARIABLE_NAME) to print the user input.
Code:

#!/bin/bash

echo "Enter a number:"

read num

echo "The number is: $num"

Output:

Enter a number:

12

The number is: 12

Example 3: Reading User Input Variable with Prompt Message
The read command used with option -p allows you to prompt a message along with taking user
input. You can use echo $(VARIABLE_NAME) to display the user input on the screen.
Code:

#!/bin/bash

read -p "Enter a number:" num

echo "The number is: $num"

Output:

Enter a number: 12

The number is: 12

Example 4: Concatenating Multiple Variables
You can concatenate multiple variables and store it into a single variable by enclosing them with
a double quotation (“ ”).
Code:

#!/bin/bash

Declaration of variables

name='My name is Tom.'

age='My age is 12.'

Concatenation

info="${name} ${age}"

echo "Result: $info"

Output:

Result: My name is Tom. My age is 12.

Example 5: Passing Values to Variables as Command Line Arguments
For passing values as command line arguments, you have to run the script along the values in a
sequence. Later access these values using the $ and input sequence number.
Code:

#!/bin/bash

name=$1

age=$2

echo "My name is $name. My age is $age."

Syntax to run the Script:

bash bin/var_example5.sh Tom 12

Output:

My name is Tom. My age is 12.

Example 6: Deleting a Variable
You can delete a variable using the “unset command”. After deleting the variable, you can still
access the variable but it will not contain any value. Therefore, printing the variable will output
nothing.
Code:

#!/bin/bash

name="LinuxSimply"

echo "Name before deletion: $name"

unset name

echo "Name after deletion: $name"

Output:

Name before deletion: LinuxSimply

Name after deletion:

Example 7: Getting the Length of a Variable
To get the length of a variable use the syntax “${#VARIABLE_NAME}”. It will return the number
of characters present in the variable.
Code:

#!/bin/bash

var="Linuxsimply"

length=${#var}

echo "The length of the variable is: $length"

Output:

The length of the variable is: 11

Example 8: Checking If a Variable is Empty or Not
Check if a variable is empty or not using the if-else statement. Use the “-z” option to check if
the length of the variable is 0. If the length is 0 then the variable is regarded as empty.
Otherwise, it contains some value.
Code:

#!/bin/bash

var=""

if [-z "$var"]; then

echo "The variable is empty."

else

echo "The variable is not empty."

fi

Output:

The variable is empty.

Example 9: Print Environment Variable using Bash Script
You can store an Environment Variable in a regular manner and print it using ${!..} syntax.
Code:

#!/bin/bash

read -p "Enter an Environment Variable name:" var

echo "Environment:${!var}"

Output:

Enter an Environment Variable name:

HOME

Environment:/home/anonnya

Example 10: Changing Internal Field Separator(IFS)/Delimiter Variable
You can modify the default Internal Field Separator of bash by accessing the IFS variable. By
changing the IFS you will be able to access values separated by your desired delimiter. After
this task again restore the original IFS to avoid any error.
Code:

#!/bin/bash

#store default IFS

old_IFS= $IFS

IFS=,

read val1 val2 val3 <<< "5,60,70"

echo 1st value: $val1

echo 2nd value: $val2

echo 3rd value: $val3

#restore default IFS

IFS= $old_IFS;

Output:

1st value: 5

2nd value: 60

3rd value: 70

Example 11: Taking Input Variable as Password
In bash, you can utilize the read command for taking password-type inputs. Application of the
read with -sp option hides the input characters when you type them.
Code:

#!/bin/bash

read -sp "Enter your password: " pass

echo -e "\nYour password is: $pass"

Output:

Enter your password:

Your password is: linuxsimply

Example 12: Using Variables in Command Substitutions
Variables can be used to store command outputs. Later you can modify this command output
using the variable. Below you can see that the output of the ls command has been stored in a
variable with the $(command) syntax.
Code:

#!/bin/bash

files=$(ls)

echo -e "List of files in the Current directory:\n$files"

Output:

List of files in the Current directory:

bin

Desktop

Documents

https://linuxsimply.com/ls-command-in-linux/

Downloads

Music

Pictures

Example 13: Writing and Reading Variables to a File
You can write a variable directly to a file using redirection(>) in Bash. To read the variable
written in file you can source that file to include the file contents in your script and again refer to
that variable.
Code:

#!/bin/bash

echo "var=Linuxsimply" > var_file.txt

source var_file.txt

echo "Hello from $var!"

Output:

Hello from Linuxsimply!

Example 14: Using Variables in for Loops
Variables are used inside a for loop as a part of its syntax. The range or condition to run the for
loop repetitively is defined with the help of variables. In the below example, you can see that
the for loop uses the range of values “{1..5}” and the variable accessing values from the range
is “i”.
Code:

#!/bin/bash

for i in {1..5}; do

echo "Variable: $i"

done

Output:

Variable: 1

Variable: 2

Variable: 3

Variable: 4

Variable: 5

Example 15: Using Variables in while Loops
The while loop in bash script can utilize variables to set the range of the loop. You can write a
condition using predefined variables inside the while[] to run the loop.
Code:

#!/bin/bash

https://linuxsimply.com/what-is-redirection-in-linux/
https://linuxsimply.com/source-command-in-linux/

var=1

while ["$var" -le 5]; do

echo "Variable: $var"

var=$((var+ 1))

done

Output:

Variable: 1

Variable: 2

Variable: 3

Variable: 4

Variable: 5

Example 16: Using Variables in until Loops
Using variables in until loop is similar to using variables in while loop. You will need to write a
condition using predefined variables inside the until[] to run the loop.
Code:

#!/bin/bash

var=1

until [$var -eq 6]

do

echo "Variable: $var"

var=$((var+ 1))

done

Output:

Variable: 1

Variable: 2

Variable: 3

Variable: 4

Variable: 5

Example 17: Accessing Variables from Array
To access the values stored in an array you will need to use the index and array name as the
variable. The syntax for accessing variables in an array is “${ARRAY_NAME[INDEX]}”. It will
return the value stored in the specified index of an array. You can store this value in another
variable or you can directly display it on the terminal.
Code:

#!/bin/bash

arr=("mango" "grape" "apple" "cherry" "orange")

echo "First array element: ${arr[0]}"

echo "Last array element: ${arr[4]}"

Output:

First array element: mango

Last array element: orange

Example 18: Passing Variables to Functions
Variables play a vital role when it comes to implementing functions. You can pass a variable or a
value to your defined function by simply typing it after the function name. This value is accessed
by the function as arguments in the form $1, $2,… etc.
Code:

#!/bin/bash

function hello {

var=$1

echo "Hello from $var!"

}

hello "Linuxsimply"

Output:

Hello from Linuxsimply!

Example 19: Using Variables in Case Statements
Variables are used as case statements. You can take a variable as user input and pass it in the
Case Statement to compare with some predefined values or variables. A list of statements then
executes depending on the comparison.
Code:

#!/bin/bash

read -p "Enter a digit: " dig

case $dig in

[0-9]) echo "It's a Digit!";;

*) echo "I don't know what it is";;

esac

Output:

Enter a digit: 9

It's a Digit!

Conclusion
In this article, I have presented a list of hands-on examples of the topic variables in Shell
Scripting. It covers all the basic applications of variables that can be useful while creating a

https://linuxsimply.com/what-is-a-shell-linux/

Shell Script. Moreover, I have included the syntax as well as a set of rules for defining variables
in Bash. Therefore, this blog can be very useful in learning all about variables in Bash Scripting.

Prepared By: Susmit Das Gupta

Web View: 19 Examples of Variables in Shell Script

Copyright ©2024 linuxsimply.com| All rights reserved

https://linuxsimply.com/susmit-das-gupta/
https://linuxsimply.com/variables-in-shell-script-examples/

