
16 Examples of For Loop in Shell Script
[Free Downloads]
Loops are introduced in programming languages to run tasks in a repetitive manner. It iterates a
set of statements within a limit depending on conditions. Like every other programming
language, Bash also supports the for loop to repeat code executions within a range or a limit.
In addition, for loop in bash scripting can also iterate over command output. In this article, you
will get to learn all about the for loop in Shell Script with the help of practical examples.

For Loop Syntax in Bash Scripting...1
Shell Script Examples Using For Loop..2

Basic Shell Scripts with For Loop.. 3
Example 1: Print Numbers from 5 to 1...3
Example 2: Print Even Numbers From 1 to 10.. 3
Example 3: Print the Multiplication Table of a Number.. 4
Example 4: Loop Through a String Character-by-Character... 5
Example 5: Loop Through Array Elements..5
Example 6: Calculate the Factorial of a Number... 5
Example 7: Calculate the Sum of the First “n” Numbers..6
Example 8: Find the Smallest and Largest Elements in an Array......................................6
Example 9: Calculate the Average of an Array of Numbers.. 7

Task-Specific Shell Scripts with For Loop..7
Example 1: Take Multiple Filenames and Prints their Contents...8
Example 2: Read Lines from a File..8
Example 3: Loop Through Files with a Specific Extension.. 9
Example 4: Loop Through Files in Multiple Directories..9
Example 5: Organizes Files in a Directory Based on their File Types............................. 10
Example 6: Loop Through Command Output.. 11
Example 7: Kill All Processes That are Consuming More Than a Certain Amount of CPU.
11

Conclusion... 12

1

https://linuxsimply.com/for-loop-in-shell-script-examples/
https://linuxsimply.com/bash-in-linux/

For Loop Syntax in Bash Scripting
Similar to all the programming languages, the for loop in Shell Scripting also follows a certain
syntax. However, this syntax can vary depending on the purpose of the user. This is because
Bash provides different for loop syntaxes for accessing data stored in different data structures.
You can run a for loop over a range of values, a list of items, or an array of elements. Syntaxes
for each of the cases are given below:

A. for loop Syntax for Numeric Range
for i in {INITIAL_VAL..TERMINATING _VAL}

do

#code to execute

done

OR,

for ((i=INITIAL_VAL; i<=TERMINATING _VALUE; i++))

do

#code to execute

done

OR,

for i in {INITIAL_VAL..TERMINATING _VAL..INCREMENT}

do

#code to execute

done

B. for loop Syntax for List of Elements
for item in item1 item2 item3 ..itemN

do

#code to execute

done

C. for loop Syntax for Array
for element in "${arr[@]}"

do

#code to execute

done

D. for loop Syntax for Command Output
for output in $(LINUX_COMMAND)

do

#code to execute

done

2

Shell Script Examples Using For Loop
The for loop in Shell Scripting can be used to achieve numerous tasks similar to other
programming languages. This section covers some of the frequent applications of the for loop.
For your convenience, I have categorized the examples into two groups: Basic Shell Scripts
and Task-Specific Shell Scripts. Follow the categories below to learn more about the
applications of for loop.

Basic Shell Scripts with For Loop
This section covers a list of examples considered as the basic applications of for loop. These
examples focus on the utilization of for loop in different computational scenarios. Therefore, go
through the examples below to learn more about the conceptual usage of for loop.

Example 1: Print Numbers from 5 to 1
You can use the for loop in bash to print a number sequence. In this case, specify the condition
to stop the loop inside “for (())”.
Code:

#!/bin/bash

for ((i=5; i>=1; i--))

do

echo $i

done

Output:

5

4

3

2

1

Example 2: Print Even Numbers From 1 to 10
To print the even number in a range, check the even number condition inside the for loop before
printing the number.
Code:

#!/bin/bash

for ((i=1; i<=10; i++))

do

if [$((i%2)) == 0]

then

echo $i

fi

3

done

Output:

Enter a number: 12

12 x 1 = 12

12 x 2 = 24

12 x 3 = 36

12 x 4 = 48

12 x 5 = 60

12 x 6 = 72

12 x 7 = 84

12 x 8 = 96

12 x 9 = 108

12 x 10 = 120

Example 3: Print the Multiplication Table of a Number
Use the simple echo command inside a “for” loop to display the Multiplication Table of a
number.
Code:

#!/bin/bash

read -p "Enter a number: " num

for ((i=1; i<=10; i++))

do

echo "$num x $i = $((num*i))"

done

Output:

Enter a number: 12

12 x 1 = 12

12 x 2 = 24

12 x 3 = 36

12 x 4 = 48

12 x 5 = 60

12 x 6 = 72

12 x 7 = 84

12 x 8 = 96

12 x 9 = 108

12 x 10 = 120

4

https://linuxsimply.com/echo-command-in-linux/

Example 4: Loop Through a String Character-by-Character
You can use the for loop to print a string character by character. For this, the loop needs to
initiate from 0 till the length of the string. While moving from the 0th character use echo to print
each character.
Code:

#!/bin/bash

read -p "Enter a string: " str

for ((i=0; i<${#str}; i++)); do

echo ${str:i:1}

done

Output:

Enter a string: Linux

L

i

n

u

x

Example 5: Loop Through Array Elements
For accessing each array element you can use the for loop in the following manner. Indicate
the desired array using "${ARRAY_NAME[@]}" and access each item stored in the array.
Code:

#!/bin/bash

arr=("mango" "grape" "apple" "cherry" "orange")

for item in "${arr[@]}"; do

echo $item

done

Output:

mango

grape

apple

cherry

orange

Example 6: Calculate the Factorial of a Number
Calculate the factorial of a number by running multiplications inside a “for” loop:
Code:

#!/bin/bash

read -p "Enter a number: " num

5

temp=1

for ((i=1; i<=$num; i++))

do

temp=$((temp*i))

done

echo "The factorial of $num is: $temp"

Output:

Enter a number: 6

The factorial of 6 is: 720

Example 7: Calculate the Sum of the First “n” Numbers
To calculate the sum of the first n numbers run a for loop and addition operation till n:
Code:

#!/bin/bash

read -p "Enter a number: " num

sum=0

for ((i=1; i<=$num; i++))

do

sum=$((sum + i))

done

echo "Sum of first $num numbers: $sum"

Output:

Enter a number: 100

Sum of first 100 numbers: 5050

Example 8: Find the Smallest and Largest Elements in an Array
For finding the smallest and largest element in a given array, first initialize a small and a large
number. Then compare the array elements with these numbers inside any loop.
Code:

#!/bin/bash

arr=(24 27 84 11 99)

echo "Given array: ${arr[*]}"

s=100000

l=0

for num in "${arr[@]}"

do

if [$num -lt $s]

then

s=$num

6

fi

if [$num -gt $l]

then

l=$num

fi

done

echo "The smallest element: $s"

echo "The largest: $l"

Output:

Given array: 24 27 84 11 99

The smallest element: 11

The largest: 99

Example 9: Calculate the Average of an Array of Numbers
Find the sum of array elements using a “for” loop and divide it by the number of elements i.e.
${#arr[@]}.
Code:

#!/bin/bash

echo "Enter an array of numbers (separated by space):"

read -a arr

sum=0

for i in "${arr[@]}"

do

sum=$((sum+i))

done

avg=$((sum/${#arr[@]}))

echo "Average of the array elements: $avg"

Output:

Enter an array of numbers (separated by space):

23 45 11 99 100

Average of the array elements: 55

Task-Specific Shell Scripts with For Loop
In addition to the conceptual bash scripts, in this section, you will find some task-specific script
examples. These scripts are mostly related to the regular process that you run on your system.
Hence, follow the examples below to improve your experience with Shell Scripting.

7

Example 1: Take Multiple Filenames and Prints their Contents
The below script is for reading the contents of multiple files. It will take the file names as user
input and display their contents on the screen. If any filename does not exist, it will show a
separate error message for that file.
Code:

#!/bin/bash

read -p "Enter the file names: " files

IFS=' ' read -ra array <<< "$files"

for file in "${array[@]}"

do

if [-e "$file"]; then

echo "Contents of $file:"

cat "$file"

else

echo "Error: $file does not exist"

fi

done

Output:

Enter the file names: message.txt passage.txt

Contents of message.txt:

"Merry Christmas! May your happiness be large and your bills be small."

Contents of passage.txt:

The students told the headmaster that they wanted to celebrate the victory

of the National Debate Competition.

Example 2: Read Lines from a File
The following script can be used to read and display each line from a file. Here, a filename is
taken as user input and the IFS(Internal Field Separator) is set to New Line (\n) which enables
the for loop to recognize each line individually inside the file.
Code:

#!/bin/bash

read -p "Enter a filename: " file

echo Lines:

IFS=$'\n'

for line in $(cat "$file"); do

echo "$line"

done

Output:

Enter a filename: textfile.txt

Lines:

8

I wandered lonely as a cloud

That floats on high o'er vales and hills,

When all at once I saw a crowd,

A host, of golden daffodils;

Example 3: Loop Through Files with a Specific Extension
The given script takes a file extension as user input and looks for the files with that extension
within the current directory using for loop. Inside the loop, it prints each file name.
Code:

#!/bin/bash

read -p "Enter a file extension (i.e. txt, jpg, ..): " ext

for file in *.$ext; do

echo $file

done

Output:

Enter a file extension (i.e. txt, jpg, ..): txt

file1.txt

file2.txt

textfile.txt

urls.txt

Example 4: Loop Through Files in Multiple Directories
The following script takes a list of directory names from the user. The for loop goes through
each file of every directory and prints out its name.
Code:

#!/bin/bash

read -p "Enter a list of directories: " directories

for dir in $directories; do

for file in $dir/*; do

echo $file

done

done

Output:

Enter a list of directories: Documents Pictures

Documents/list1.txt

Documents/list2.txt

Documents/message.txt

Documents/packets.pcap

Documents/ping.txt

9

Documents/poem.txt

Pictures/Screenshots

Pictures/ss1.png

Pictures/ss2.png

Example 5: Organizes Files in a Directory Based on their File Types
The script given below organizes files in a directory depending on their type. The user needs to
give a destination directory path to organize the files along with the source directory path.

This script will create five directories: 1) Documents, 2) Images, 3) Music, 4) Videos, and 5)
Others only if they do not already exist on the destination path. Then, it will check all the files
and their extension and move them to the corresponding directory. If there is any unknown file
extension, then the script will move the file to the Others Directory.
Code:

#!/bin/bash

Specify the source and destination directories

read -p "Enter path to the source directory: " source_dir

read -p "Enter path to the destination directory: " dest_dir

Create the destination directories if they don't exist

mkdir -p "${dest_dir}/Documents"

mkdir -p "${dest_dir}/Images"

mkdir -p "${dest_dir}/Music"

mkdir -p "${dest_dir}/Videos"

mkdir -p "${dest_dir}/Others"

Move files to the appropriate directories based on their extensions

for file in "${source_dir}"/*; do

if [-f "${file}"]; then

extension="${file##*.}"

case "${extension}" in

txt|pdf|doc|docx|odt|rtf)

mv "${file}" "${dest_dir}/Documents"

;;

jpg|jpeg|png|gif|bmp)

mv "${file}" "${dest_dir}/Images"

;;

mp3|wav|ogg|flac)

mv "${file}" "${dest_dir}/Music"

;;

mp4|avi|wmv|mkv|mov)

10

mv "${file}" "${dest_dir}/Videos"

;;

*)

mv "${file}" "${dest_dir}/Others"

;;

esac

fi

done

echo "Files organized successfully!"

Output:

Enter path to the source directory: /home/anonnya/Downloads

Enter path to the destination directory: /home/anonnya/Downloads_Organized

Files organized successfully!

Example 6: Loop Through Command Output
You can loop through a command’s output using the for loop. The given script will take a
command from the user input and display it as a list.
Code:

#!/bin/bash

read -p "Enter a command: " comm

for result in $($comm); do

echo $result

done

Output:

Enter a command: ls Documents

list1.txt

list2.txt

message.txt

packets.pcap

ping.txt

poem.txt

Example 7: Kill All Processes That are Consuming More Than a Certain Amount
of CPU
This script takes a CPU usage percentage as user input and terminates all the running
processes that are consuming more than the entered CPU threshold. If there is no process
above that threshold, then it returns a message saying there are no such processes.
Code:

#!/bin/bash

11

read -p "Enter CPU usage threshold: " threshold

if ["$(ps -eo pid,%cpu | awk -v t=$threshold '$2 > t {print $1}' | wc -c)"

-gt 0]; then

for pid in $(ps -eo pid,%cpu | awk -v t=$threshold '$2 > t {print $1}')

do

kill $pid

done

echo "All processes consuming more than $threshold% CPU killed."

else

echo "There are no processes consuming more than $threshold% CPU."

fi

Output:

Enter CPU usage threshold: 10

There are no processes consuming more than 10% CPU.

Conclusion
This article presents hands-on examples on the topic for loop in Shell Scripting. It covers all
possible for loop syntaxes that can be useful to a user while creating loop-based scripts.
Moreover, the practical examples are divided into two categories: Basic Shell Scripts and
Task-Specific Shell Scripts. Therefore, users from beginner to advanced levels can utilize the
provided materials to improve their experience of Bash Scripting.

12

Prepared By: Susmit Das Gupta

Web View: 16 Examples of For Loop in Shell Script [Free Downloads]

Copyright ©2024 linuxsimply.com| All rights reserved

https://linuxsimply.com/what-is-a-shell-linux/
https://linuxsimply.com/susmit-das-gupta/
https://linuxsimply.com/for-loop-in-shell-script-examples/

